KONVERSI ANTAR BENTUK KANONIK
ž Misalkan f(x, y, z) = S (1, 4, 5, 6, 7) dan f ’adalah fungsi komplemen dari f,
f ’(x, y, z) = S (0, 2, 3) = m0+ m2 + m3
ž Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS:
f ’(x, y, z) = (f ’(x, y, z))’ = (m0 + m2 + m3)’
= m0’ . m2’ . m3’
= (x’y’z’)’ (x’y z’)’ (x’y z)’
= (x + y + z) (x + y’ + z) (x + y’ + z’)
= M0 M2 M3
= Õ (0,2,3)
Jadi, f(x, y, z) = S (1, 4, 5, 6, 7) = Õ (0,2,3).
ž Kesimpulan: mj’ = Mj
CONTOH :
ž Nyatakan f(x, y, z)= Õ (0, 2, 4, 5) dan g(w, x, y, z) = S(1, 2, 5, 6, 10, 15) dalam bentuk SOP.
Penyelesaian:
f(x, y, z) = S (1, 3, 6, 7)
g(w, x, y, z)= Õ (0, 3, 4, 7, 8, 9, 11, 12, 13, 14)
ž Carilah bentuk kanonik SOP dan POS dari f(x, y, z) = y’ + xy + x’yz’
Penyelesaian:
(a) SOP
f(x, y, z) = y’ + xy + x’yz’
= y’ (x + x’) (z + z’) + xy (z + z’) + x’yz’
= (xy’ + x’y’) (z + z’) + xyz + xyz’ + x’yz’
= xy’z + xy’z’ + x’y’z + x’y’z’ + xyz + xyz’ + x’yz’
atau f(x, y, z) = m0+ m1 + m2+ m4+ m5+ m6+ m7
(b) POS
f(x, y, z) = M3 = x + y’ + z’
Tidak ada komentar:
Posting Komentar